Scientific Computing with FPGAs

The Reconfigurable Computing Cluster Project

Ron Sass http://www.rcs.uncc.edu/~rsass University of North Carolina at Charlotte September 8, 2009

computing for the masses ... slightly different audience than the National Labs and largest Universities

Computational Science

 in addition to experimental and theoretical branches of science, computational science is now crucial to nearly every discipline

Computational Science

- in addition to experimental and theoretical branches of science, computational science is now crucial to nearly every discipline
- however...

Computational Science

- in addition to experimental and theoretical branches of science, computational science is now crucial to nearly every discipline
- however...
 - science is limited by the power of the instrument
 - the rate-of-discovery is tightly coupled to the rate-of-computation

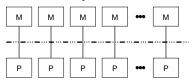
Beowulf

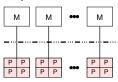
- Beowulf-style parallel computing couples
 - Commodity Off-The-Shelf (COTS) hardware
 - Open Source software (GNU, Linux, MPI, etc.)
- with help from Moore's Law, this approach has come to dominate the high-end computing; consider TOP500 list

Beowulf

- Beowulf-style parallel computing couples
 - Commodity Off-The-Shelf (COTS) hardware
 - Open Source software (GNU, Linux, MPI, etc.)
- with help from Moore's Law, this approach has come to dominate the high-end computing; consider TOP500 list
 - 80% are "clusters"
 - 57% use Gigabit Ethernet
 - 85% use Linux

Scaling Beowulf


- to improve the rate-of-computation
 - use faster nodes
 - buy more nodes


Scaling Beowulf

- to improve the rate-of-computation
 - use faster nodes
 - buy more nodes
- however, to make it on the list ...
 - 960 nodes (six 42U racks) Num. 474
 - 1200 processors (10 racks) Num. 486

Scaling Beowulf

- to improve the rate-of-computation
 - use faster nodes
 - buy more nodes
- however, to make it on the list ...
 - 960 nodes (six 42U racks) Num. 474
 - 1200 processors (10 racks) Num. 486
- multi-core/many-core to the rescue! except:

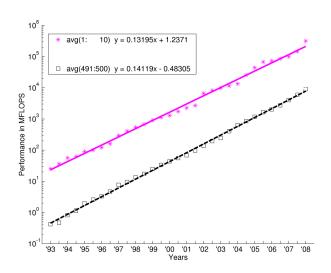
(same with disk I/O bandwidth)

Moore's Law will march on, but the technology trends are not positive

- memory bandwidth, latency are not improving
 - it is a packaging problem (no more pins)
 - 70ns for 64 Mb SDRAM in 1994;
 30-60ns for 2Gb SDRAM in 2007

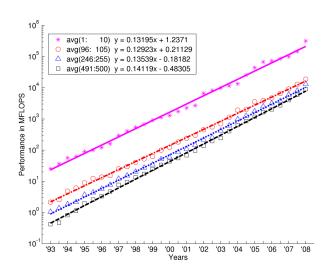
Moore's Law will march on, but the technology trends are not positive

- memory bandwidth, latency are not improving
 - it is a packaging problem (no more pins)
 - 70ns for 64 Mb SDRAM in 1994;
 30-60ns for 2Gb SDRAM in 2007
- power density
 - not every scientist has 5 MW in his/her machine room
 - 400-500W power supplies are common
 - 100W/sqft (no floor/ceiling air)

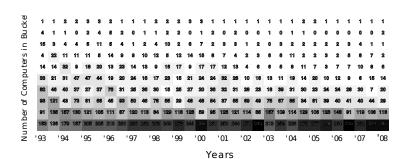


Moore's Law will march on, but the technology trends are not positive

- memory bandwidth, latency are not improving
 - it is a packaging problem (no more pins)
 - 70ns for 64 Mb SDRAM in 1994;
 30-60ns for 2Gb SDRAM in 2007
- power density
 - not every scientist has 5 MW in his/her machine room
 - 400-500W power supplies are common
 - 100W/sqft (no floor/ceiling air)
- size/mass
 - building infrastructure
 - physical distance between switch and node



Concrete Evidence?



Concrete Evidence?

Concrete Evidence?

Outline

Hypothesis

Hypothesis: A network of Platform FPGA devices will scale to a PetaFLOP and be more cost-effective than Beowulf-style Commodity Clusters.

this is controversial...

- FPGAs consume more power than ASICs or custom ICs
- ullet typically 10× slower clock frequency, 4× more area
- communication costs torpedo many applications
- programming model (850,000 programmers graduate each year versus 80,000 hardware engineers!)

Spirit: Reconfigurable Computing Cluster


to answer these questions, Spirit, a small-scale model was fabricated

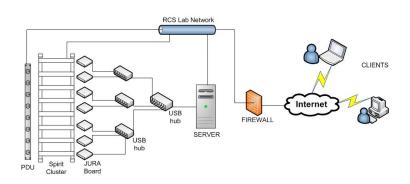
to answer these questions, Spirit, a small-scale model was fabricated

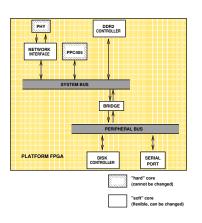
 64 commodity developer boards (Xilinx ML-410)

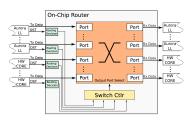
to answer these questions, Spirit, a small-scale model was fabricated

- 64 commodity developer boards (Xilinx ML-410)
- custom network board that with low-cost SATA connectors/cables

to answer these questions, Spirit, a small-scale model was fabricated


- 64 commodity developer boards (Xilinx ML-410)
- custom network board that with low-cost SATA connectors/cables
- developed system software for remote access (power on/off, JTAG, etc.)


4 D > 4 D > 4 D > 4 D >



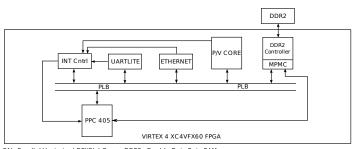
Organization

IBM CoreConnect (SoC) — > Platform FPGA

DEXP

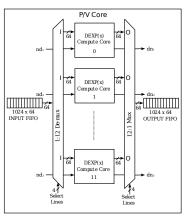
- many processes in nature exhibit an exponential decay property
 - molecular forces
 - concentration gradients of protein in a gel
 - other simulations

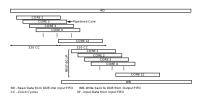
DEXP


- many processes in nature exhibit an exponential decay property
 - molecular forces
 - concentration gradients of protein in a gel
 - other simulations
- hence, computational scientists make extensive use of e^{-x} in computer simulations

DFXP

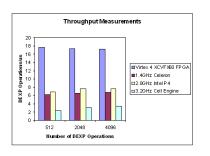
- many processes in nature exhibit an exponential decay property
 - molecular forces
 - concentration gradients of protein in a gel
 - other simulations
- hence, computational scientists make extensive use of e^{-x} in computer simulations
- our goal: FPGA implementation of double-precision, IEEE 754 standard e^{-x}
 - (in FORTRAN this DEXP, hence the name)

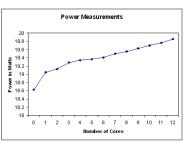



Overall Design

P/V - Parallel Vectorized DEXP(x) Core DDR2 - Double Date Rate RAM PPC- Power PC Core INT Cntrl - Interrupt Controller

Core Design



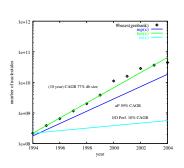


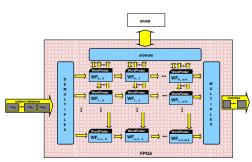
イロト イ団 トイミト イミト 一度 一

nd - New data (enable) signal dn - Done

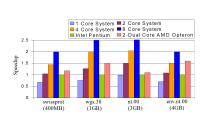
Speed and Power

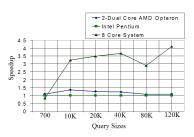
- about 29 μ s for FPGA, 66 μ s on modern processor
- ullet < 20 W for FPGA system versus pprox 350 W (not measured)

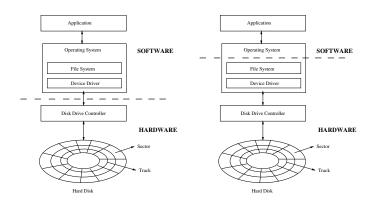

BLAST


- BLAST is a bioinformatics application used by thousands (hundred-thousands?) biologists every day
 - hardware can be used to speed it up
 - but it quickly becomes I/O bound problem (primary and secondary storage)

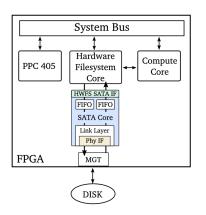
BLAST

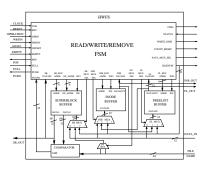

- BLAST is a bioinformatics application used by thousands (hundred-thousands?) biologists every day
 - hardware can be used to speed it up
 - but it quickly becomes I/O bound problem (primary and secondary storage)
- our goal: scalable FPGA implementation scan (previously NtWordFinder) and secondary storage subsystem to scale I/O bandwidth


RC-BLAST

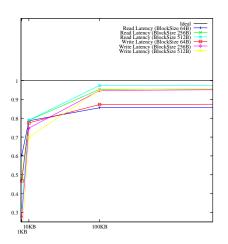


BLAST Performance





HWFS: Migrating Filesystem Operations into Logic

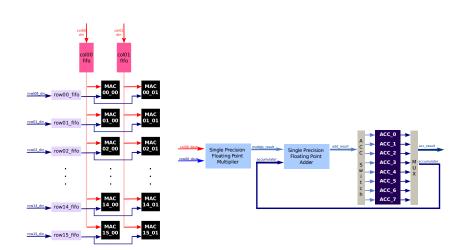



HWFS: Base System and Implementation

Efficiency

BLAS — Basic Linear Algebra Subroutines

- BLAS (and its descendents) is a library often used by scientists for dense matrix computations
 - matrix-matrix multiplication
 - matrix-vector multiplication
 - inner product



BLAS — Basic Linear Algebra Subroutines

- BLAS (and its descendents) is a library often used by scientists for dense matrix computations
 - matrix-matrix multiplication
 - matrix-vector multiplication
 - inner product
- our goal: show peak floating-point performance of our devices; benchmark with High-Performance Linpack
- experiments include single node tests and an MPI application; largest matrix size: 14336 × 14336

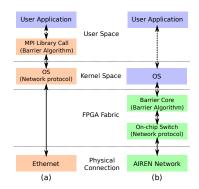
MAcc — Multiply/Accumulate Array

Single Node MFLOPS for Various Matrix Sizes

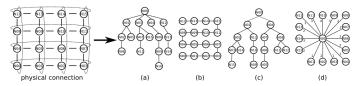
Theoretical Peak: 6.4 GFLOPs

Theoretical Feak. 0.4 Cl LOI 3		
Size	MFLOPS	Speedup
16 × 16	839.04	1
32 × 32	1431.02	1.71
64 × 64	2102.38	2.51
128 × 128	2726.64	3.25
256 × 256	3197.60	3.81
512 × 512	3498.54	4.17
1024 × 1024	3670.87	4.38
2048 × 2048	3763.60	4.49
4096 × 4096	3811.77	4.54

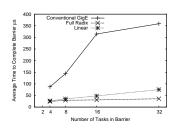
Measured Power: 90 MFLOPS/Watt

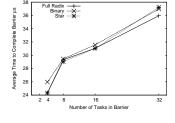

Network Performance

- theoretical
 - 4 Gbps (error-free) per direction per link (lanes)
 - 8 links per FPGA so 64 Gbps in/out of node
 - after 8B/10B encoding, 3.2 Gbps
 - \$120 (real cost) per NIC (switch is free)
- measured hardware core-to-core
 - about 95% of theoretical bandwidth with 16 KB messages
 - 0.8 μs chip-to-chip latency
 - 0.08 μ s on-chip latency (just the crossbar)
- measured (Linux) software process-to-process
 - about 56% of theoretical for 16 KB message
 - approaches 2.4–2.5 Gbps (80% of theoretical) for 1 MB message
 - 100 μs chip-to-chip latency


MPI Collective Communications

- migrate latency sensitive operations
- reduce interrupts and traversing OS/library interfaces
- hardware cores directly connected to network




Barrier: Point-to-Point Communication in hardware

4-ary 2-cube torus (subcube of whole cluster); (a) Full-Radix tree, (b) Linear tree, (c) Binary tree, (d) Star tree

Barrier Results

software MPI_Barrier GigE versus hardware barrier core on Full-Radix (best) and Linear (worst) topology

hardware barrier core on Full-Radix, Binary tree and Star topology

Spirit Summary

- work-in-progress... but cards are falling right
- absolute comparisons are difficult right now Spirit is a very small scale model
- power numbers are excellent
 - FPGA with MAcc array: 90 MFLOPS/Watt
 - Desktop CPU (Opteron): 27 MFLOPS/Watt
- network numbers are solid
- will it work for a range of applications???

Thanks to the People that Really Did the Work

- Andy Schmidt
- Will Kritikos
- Robin P.
- Shan Yuan Gao
- Ashwin Mendon
- Yamuna Rajasekhar
- Sidd Datta

Overview

Resilient

- Webster: recovering readily from adversity
- Presently: fault tolerance
- Longview: performance degradation as well as fault mitigation
 - OS noise / OS jitter
 - timing due to hardware RAS (hard drives, down clocking)
 - result of checkpointing/restart software

My aim with the remainder of this talk is spur questions: Where are there points of collaboration?

Trends Going Forward

- $65\text{nm} \rightarrow 45\text{nm} \rightarrow \cdots 32\text{nm}$
 - less tolerant, smaller target
 - more susceptible
- longer running simulations
- higher component count machines
- traditional techniques (TMR) not feasible
- commodity components will incorporate Reliability-Available-Serviceability (RAS)

Working Assumption: Every execution will have exceptional events.

Essential Question

How to prepare for an unpredictable, unreliable future with today's technology?

- cycle-accurate simulators of parallel systems: impossible
- behavioral simulations lack fidelity
- real systems today (that exhibit exceptions) are rare and precious

Enter An FPGA Cluster

fully operational MPI solution with (re)programmable hardware offers interesting (inexpensive) possibilities

- targeted, reproducible fault injection
- variable grain disturbance (down to cycle-level)
- custom (exploratory) performance monitoring
- analytics to suggest an exceptional situation has (or will) occur

all (nearly) "Heisen-bug free" —

- implemented in hardware
- operating in parallel with functioning system

What is Needed?

Administratively, a testbed with...

- hardware fault (performance) injection based on a probability distribution function (or trace?)
- fault reproducibility (same physical bits flipped)
- behavior reproducibility (app fails at the same place)
- resilience middleware
- plan for credible experiments/exploration
 - What needs to be observed?
 - How to aggregate data into actionable decision?

Probes & Dials

- a set of adjustable, composable, interacting hardware components
- Probes
 - back-end components that sense specific events (interrupts, messages, bus activity)
 - front-end components that aggregate data (interrupts per second, sliding windows, trigger on extraordinary situation)
- Dials
 - perturb running system
 - adjustable at run-time (on/off, frequency, duration, etc.)

Back-End Probes

- PowerPC Trace Port (branches, system calls, etc.)
- PowerPC interrupts
- system bus activity
- network packets (source, destination, size)
- temperature
- disk activity

Front-End Probes

- convert counts to rates (messages per second)
- collect sliding window of data
- convolution (e.g., edge detection)
- artificial neural network (trained to detect "healthy" node)

Dials

Performance

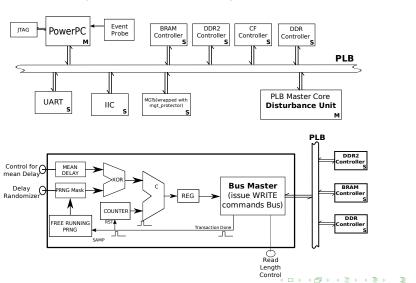
- system bus "cycle stealer"
- network bandwidth stealer
- increase DRAM latency
- false interrupt generator
- down clocking components

Fault

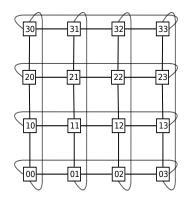
- DRAM bit flipper
- corrupt floating-point results
- corrupt data packets (after CRC)

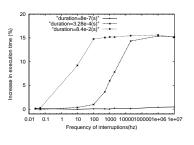
Current Probes and Dials

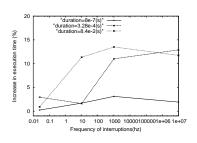
- PLB (system) bus "cycle stealer"
 - master performs unnecessary reads or writes to a null slave
 - adjust frequency of interruption
 - adjust duration (repeated transaction) of interruption
- PowerPC Trace port collects 64MB of data
- SDRAM bit flipper
 - selects a random word of off-chip memory and flips one random bit
 - frequency is adjustable
 - PRNG seed can be set at run-time
- Count Interrupts and Convert to rate period is adjustable
- Sliding Window plus Edge Detector



Experiment with Cycle Stealer


- attach cycle stealer to degrade the performance of one node
- adds contention does not always prevent processor
- run NAS Parallel Benchmark (IS) on one node
- Three questions
 - What are reasonable ranges for frequency and duration before node observes performance degradation?
 - What are the effects on a 16-node system if one node is degraded?
 - Will the system observe the performance degradation before the node?

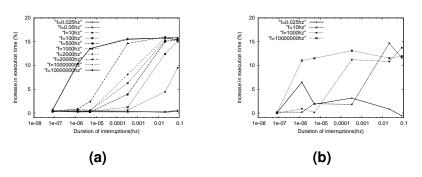

Experimental Set-Up: One Nodes



Experimental Set-Up: Sixteen Nodes

Increase in Execution Time while Varying Frequency

one node


sixteen nodes

4 D > 4 B > 4 E > 4 E > ...

percent increase in execution time of NAS Parallel Benchmark IS as μ_{freq} increases; μ_{dur} is fixed at $0.8\mu\text{s}$, $328\mu\text{s}$, and 84ms

Increase in Execution Time while Varying Duration

percent increase in execution time of NAS Parallel Benchmark IS as μ_{dur} increases; (a) one node and (b) 16 nodes

4 D F 4 P F F F F F F F

Interpretation

- PLB system bus (plus PowerPC cache) is very resilient!
 - bus reads are lower priority and no slow down was observed (results were achieved with writes)
 - even with near saturation (approximately 9:1) bus prevented starvation (only 20% slow down)
- duration has larger impact that frequency
- system was impacted by a single node failing
- in some cases, system was impacted sooner than a single node

Other Probes and Dials

- PowerPC Trace Port: we are gathering the data but not sure how to decode it — documentation is very thin
- Off-Chip RAM bit flipper
 - works... increasing rate of error generally decreases time to kernel panic/oops
 - even though the bit flipping is perfectly reproducible, Linux concurrency is not (so multiple runs and statistics are required)

Resiliency Work

- Rahul Sharma
- Nathan DeBardeleben

Discussion

I will be with Nathan the rest of day...

Why FPGAs?

1. Power

- every transistor (in the application-specific FPGA design) is contributing to the solution
 - minimizes static power
 - dynamic power is used for *useful* computation

1. Power

- every transistor (in the application-specific FPGA design) is contributing to the solution
 - minimizes static power
 - dynamic power is used for useful computation
- slower clock rates: a design win

2. System Integration

highly-integrated systems:

single Platform FPGA can be configured with processors, system bus, peripherals, network interface, disk controllers — all running Mainline Linux Kernel

fewer discrete components:

- lower power
- size advantages
- fewer points of failure

2. System Integration

highly-integrated systems:

single Platform FPGA can be configured with processors, system bus, peripherals, network interface, disk controllers — all running Mainline Linux Kernel

fewer discrete components:

- lower power
- size advantages
- fewer points of failure
- single memory hierarchy

2. System Integration

highly-integrated systems:

single Platform FPGA can be configured with processors, system bus, peripherals, network interface, disk controllers — all running Mainline Linux Kernel

fewer discrete components:

- lower power
- size advantages
- fewer points of failure
- single memory hierarchy
- ability to use cheap, high-speed, custom networking

3. Resources Are Fungible

 we start with a super simple, bare bones design (processor, memory, Ethernet, serial console)

3. Resources Are Fungible

- we start with a super simple, bare bones design (processor, memory, Ethernet, serial console)
- depending on the application or domain, add special-purpose cores:
 - dexp (-x) exponential decay is common in many computer simulations of natural phenomenae
 - MAcc 16 × 16 array of floating-point units for BLAS
 - scan computationally intensive part of BLAST algorithm
 - On-Chip/Off-Chip Network AIREN core-to-core communication DMA access to 64 Gbps custom network

PNN, FFT, Convolution, Barrier/Collectives, HWFS, Integer Sort

4. On-Chip Communication

- FPGAs already have a tested, high-bandwidth Network-On-Chip
- configurability allows for novel operations
 - computation-in-the-network
 - disk/network integration (think: multi-disk filesystem that spans cluster)